
Ross Ogilvie 2nd December, 2024

Introduction to Partial Differential Equations

Exercise sheet 14

42. Method of Descent

In this exercise we will apply the method of descent to solve the wave equation on R2 for

a particular set of initial conditions. The idea is to help you understand the key ideas and

notation of the method. It is a combination of results from Sections 5.1–5.

Consider the wave equation on R2 with initial conditions

∂2
t u−∆u = 0 on (x, t) ∈ R2 × (0,∞),

u(x, 0) = g(x) = χ[0,∞)(x1), ∂tu(x, 0) = h(x) = 0.

(a) Suppose u is a solution of the wave equation for n = 2. Why does (x1, x2, x3, t) 7→
u(x1, x2, t) solve the wave equation on R3? (note, the Laplacians are different in differ-

ent dimensions). (1 point)

(b) Conversely, prove that a solution ū to the 3-dimensional wave equation that does not depend

on x3 gives a solution to the 2-dimensional wave equation. (1 point)

(c) By (a) and (b), we now must solve a wave equation on R3. The key to solving the 3-

dimensional wave equation is to consider the (spatial-)spherical means

U(x, t, r) =
1

4πr2

∫
∂B(x,r)

ū(z, t) dσ(z),

and likewise let G and H be the spherical means of ḡ and h̄ respectively. Explain why

ḡ(x1, x2, x3) = χ[0,∞)(x1) and h̄ = 0 (or give the definition of bar). Show that

G(x, r) =


0 for x1 ≤ −r

1
2
x1+r
r for |x1| ≤ r

1 for r ≤ x1

and H(x, r) = 0.

You may use the following geometric fact: for −R < a < b < R, the surface area of the

part of the sphere ∂B(0, R) with a < x1 < b is 2πR(b− a). (4 points)

(d) We know by Lemma 5.2 that U obeys the Euler-Poisson-Darboux equation. Let Ũ(x, t, r) :=

rU(x, t, r). Show that Ũ obeys the following PDE

∂2
t Ũ − ∂2

r Ũ = 0 on (t, r) ∈ [0,∞)× [0,∞),

Ũ(x, 0, r) = rG(x, r), ∂tŨ(x, 0, r) = rH(x, r).

Note that there are no x-derivatives in this PDE, so we can think of it as a family of PDEs

in the variables r, t parametrised by x. (2 points)

(e) Thus we see that Ũ obeys the 1-dimensional wave equation on the half-line r ∈ [0,∞). This

is solved by a trick using reflection, and the formula is at the end of Section 5.2. We only

need the solution for small r, so it is enough to consider the case 0 ≤ r ≤ t. In this case,
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show

Ũ(x, t, r) =



0 for x1 ≤ −(t+ r)

1
4(x1 + t+ r) for − (t+ r) ≤ x1 ≤ −(t− r)

1
2r for |x1| ≤ t− r

1
4(x1 − t+ 3r) for t− r ≤ x1 ≤ t+ r

r for x1 ≥ t+ r.

(4 points)

(f) Recover ū from Ũ using a certain property of spherical means. (3 points)

Observe that ū does not depend on x3. So by part (b) we have a solution to the 2-dimensional

wave equation:

u(x1, x2, t) =



0 for x1 < −t

0.25 for x1 = −t

0.5 for − t < x1 < t

0.75 for x1 = t

1 for x1 > t.

This solution has jump discontinuities, but this is unsurprising since the initial conditions also

had them.

Solution.

(a) Recall the definition ū(x1, x2, x3, t) = u(x1, x2, t). In words, the bar function is the same

formula but considered in a higher dimensional space. This explains ḡ and h̄. So it is

constant in the x3 dimension and ∂3ū = 0.

If we write out the wave equation on R3 fully

(∂2
t − ∂2

1 − ∂2
2 − ∂2

3)ū = (∂2
t − ∂2

1 − ∂2
2)u− ∂2

3 ū = 0.

(b) By the same reasoning

(∂2
t − ∂2

1 − ∂2
2)ū = ∂2

3 ū = 0.

Hence we get the solution u(x1, x2, t) = ū(x1, x2, 0, t). The choice x3 = 0 is not significant,

because ū is constant in x3. Any other choice gives the same thing.

(c) By definition

G(x, r) =
1

4πr2

∫
∂B3(x,r)

χ[0,∞)(z1) dσ(z).

We use B3 here to make clear this is a ball in 3-dimensional space. If this ball lies entirely

in the space with z1 ≥ 0 then the integrand is always 1 and the integral is just the surface

area of the sphere. This occurs if x1 (the first coordinate of the centre of the ball) is greater

than the radius r. Likewise, if x1 < −r then the integrand is always zero.

So it remains to handle the case −r ≤ x ≤ r. The integral is

G(x, r) =
1

4πr2

∫
∂B3(x,r)∩{0≤x1≤r}

1 dσ(z) =
1

4πr2
× 2πr(r + x1) =

1

2

x1 + r

r
.
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(d) We just differentiate

∂2
t (rU)− ∂2

r (rU) = r∂2
t U − ∂r(U + r∂rU) = r∂2

t U − 2∂rU − r∂2
rU.

This is r multiplied by the Euler-Poisson-Darboux equation for n = 3. Since U solves

this equation, we get 0 on the right hand side. For the initial conditions Ũ(x, 0, r) =

rU(x, 0, r) = rG(x, r) and likewise for H.

(e) The solution of the wave equation on the half line, for 0 ≤ r ≤ t is

Ũ(x, t, r) =
1

2

[
G̃(x, t+ r)− G̃(x, t− r)

]
+

1

2

∫ t+r

t−r
H̃(x, y) dy

=
1

2
[(t+ r)G(x, t+ r)− (t− r)G(x, t− r)] +

1

2

∫ t+r

t−r
0 dy,

since H̃ = rH = 0. Under the assumption 0 ≤ r ≤ t, you can see that −(t+r) ≤ −(t−r) ≤
0 ≤ (t− r) ≤ (t+ r). Thus there are five cases intervals to consider

Ũ(x, t, r) =



for x1 ≤ −(t+ r) : 0− 0

for − (t+ r) ≤ x1 ≤ −(t− r) : 1
4(x1 + t+ r)− 0

for |x1| ≤ t− r : 1
4(x1 + t+ r)− 1

4(x1 + t− r)

for t− r ≤ x1 ≤ t+ r : 1
2(t+ r)− 1

4(x1 + t− r)

for x1 ≥ t+ r : 1
2(t+ r)− 1

2(t− r)

.

(f) We know that a function is equal to the limit of its spherical mean as the radius goes to

zero, ū(x, t) = limr→0 U(x, t, r) = limr→0 r
−1Ũ(x, t, r). The first, third, and fifth cases of Ũ

give

ū(x1, x2, x3, t) =


0 for x1 < −t

1
2 for − t < x1 < t

1 for x1 > t.

To find the value of ū(x, t) for x1 = −t, we see that this sits in the second case of Ũ . We

get

lim
r→0

1

4

x1 + t+ r

r
= lim

r→0

1

4

0 + r

r
=

1

4
.

Similarly ū(t, x2, x3, t) =
3
4 .

This behaviour at the jump discontinuities is typical for these averaging methods, it gives

the value at the jump as the average of the two sides of the discontinuity. Properly, when we

have functions which are not twice continuously differentiable we should use distributions

and weak solutions. In that context, the value of the function at the jump is not significant,

it is just an artifact of using spherical means.
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43. Wave energy modes

Let us work with n = 1 for simplicity. If we apply the Fourier transform to the wave equation,

we arrive at
∂2û

∂t2
+ 4π2k2û = 0.

This leads us to define the spectral energy density

2E(k, t) :=
∣∣∣∣∂û∂t

∣∣∣∣2 + 4π2k2 |û|2 .

(a) Through calculation, show that E is constant in t. Note that û is a complex valued function

and it is important to respect complex conjugation: |g|2 = gḡ. (1 point)

(b) Consider a complex valued function g and its conjugate h = ḡ. Prove that ĥ(k) = ĝ(−k).

(1 point)

(c) Using an equation on page 73 for the script, establish Plancherel’s theorem (1 point)∫
R
|h|2 dx =

∫
R
|ĥ|2 dk.

(d) Use this to show that the energy of a wave is constant. (2 points)

Solution.

(a)

2
∂E
∂t

=
∂

∂t

[
∂û

∂t

∂û

∂t
+ 4π2k2ûû

]
=

∂2û

∂t2
∂û

∂t
+

∂û

∂t

∂2û

∂t2
+ 4π2k2

∂û

∂t
û+ 4π2k2û

∂û

∂t

=

[
∂2û

∂t2
+ 4π2k2û

]
∂û

∂t
+

∂û

∂t

[
∂2û

∂t2
+ 4π2k2û

]
= 0.

(b)

ĥ(k) =

∫
R
g(x)e−2πik·x dx =

∫
R
g(x)e2πik·x dx =

∫
R
g(x)e−2πi(−k)·x dx = ĝ(−k).

(c) Begin with the equation ∫
R
ûv =

∫
R
uv̂.

The trick is to choose v = û. By the previous part

v̂(k) = F
[
û
]
(k) = F

[
û
]
(−k) = F−1

[
û
]
(k) = u(k),

using the Fourier inversion theorem that F−1[u](k) = F [u](−k). Substitution of v and v̂

yields the theorem.
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(d) We observe that the energy is given by

e(t) =
1

2

∫
R

∣∣∣∣∂u∂t
∣∣∣∣2 + ∣∣∣∣∂u∂x

∣∣∣∣2 dx =
1

2

∫
R

∣∣∣∣F [
∂u

∂t

]∣∣∣∣2 + ∣∣∣∣F [
∂u

∂x

]∣∣∣∣2 dk

=
1

2

∫
R

∣∣∣∣∂û∂t
∣∣∣∣2 + |2πikû|2 dk =

∫
R
E(k, t) dk.

The right hand side is constant in t by part (a).
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