
Ross Ogilvie 25th November, 2024

Introduction to Partial Differential Equations

Exercise sheet 13

38. Distinct characteristics

(a) Show that the a smooth function u = u(ζ, η) : R×R → R is a solution to ∂ζ∂ηu = 0 exactly

when it is of the form u(ζ, η) = F (ζ) +G(η), for smooth functions F,G : R → R.
(2 points)

(b) Under the parameterisation ζ = x + t, η = x − t, show that u obeys the one dimensional

wave equation (∂2
t − ∂2

x)u = 0 exactly when it solves the PDE in (a). (3 points)

(c) From parts (a) and (b), derive D’Alembert’s formula. (2 points)

Solution.

(a) Suppose u is a solution. Integrating once, we see that ∂ηu = g(η), because for each value of

η, ∂ηu must be constant in ζ. Integrating again gives u = F (ζ)+
∫
g(η) dη =: F (ζ)+G(η).

The converse is immediate.

(b) Using the chain rule we compute the operator under the change of variables. Note x =
1
2(ζ + η) and y = 1

2(ζ − η).
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4
(∂x∂x − ∂x∂t + ∂t∂x − ∂t∂t) =

1

4
(∂x∂x − ∂t∂t).

We see then that the operator ∂t∂t − ∂x∂x is just a rescaling of ∂ζ∂η.

(c) We are asked to solve the problem of Theorem 5.1:
∂2
t u− ∂2

xu = 0

u(x, 0) = g(x)

∂tu(x, 0) = h(x),

where g is twice continuously differentiable and f is only once continuously differentiable.

From (a), we know that the equation is simpler in the (ζ, η) coordinates, where u(ζ, η) =

F (ζ) + G(η) solves the wave equation. The functions F and G are only defined up to a

constant between them (ie u = (F −C)+(G+C) also), so without loss of generality choose

G(0) = 0.

When t = 0 that corresponds to x = ζ = η. So the initial conditions say F (ζ)+G(ζ) = g(ζ)

and ∂tu|t=0 = (∂ζ − ∂η)u|ζ=η = F ′(ζ)−G′(ζ) = h(ζ). Integrating the latter gives∫ ζ

0
h(y) dy =

∫ ζ

0
F ′(y)−G′(y) dy = F (ζ)−G(ζ)− (F (0)−G(0)).

Now we have two linear equations for F and G, so solving gives

F (ζ) =
1

2

[
g(ζ) + F (0)−G(0) +

∫ ζ

0
h(y) dy

]
, G(ζ) =

1

2

[
g(ζ)− F (0) +G(0)−

∫ ζ

0
h(y) dy

]
.
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Changing the variable in G back to η and summing gives:

u = F (ζ) +G(η)

=
1

2

[
g(ζ) +

∫ ζ

0
h(y) dy

]
+

1

2

[
g(η)−

∫ η

0
h(y) dy

]
=

1

2
[g(ζ) + g(η)] +

1

2

∫ ζ

η
h(y) dy.

Finally, changing back to (x, t) coordinates gives the desired formula.

39. Faster!

How should you modify D’Alembert’s formula for this situation?
∂2
t u− a2∂2

xu = 0

u(x, 0) = g(x)

∂tu(x, 0) = h(x),

Solve this for the initial data a = 2, g(x) = sin(x) and h(x) = 1. (5 points)

Solution. One can rescale one of the coordinates to compensate for the factor of a2. Namely,

let τ = at. Because t = 0 when τ = 0, the first initial condition is unchanged. The second initial

condition however reads a∂τu(x, 0) = h(x). Using the formula for the solution to this new initial

value problem for the wave equation, but then further making the substitution τ = at, gives

u(x, t) =
1

2
[g(x+ at) + g(x− at)] +

1

2

∫ x+at

x−at

1

a
h(y) dy.

With the given initial data

u(x, t) =
1

2
[sin(x+ 2t) + sin(x− 2t)] +

1

4

∫ x+2t

x−2t
1 dy

=
1

2
[sin(x+ 2t) + sin(x− 2t)] + t.

40. Plane Waves

Suppose that u : Rn × R → R is a solution to the following modified wave equation:

∂2u

∂t2
−

n∑
j=1

c2j
∂2u

∂x2j
= 0 , (∗)

where c1, . . . , cn > 0 are constants.
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(a) Let α ∈ Rn be a unit vector ∥α∥ = 1, µ ∈ R and F : R → R a twice continuously

differentiable function. Show that

u(x, t) := F (α · x− µt)

is a solution of (∗) exactly when

µ2 =
n∑

j=1

α2
jc

2
j

or F is linear. Solutions of (∗) with this form are called plane waves. (2 points)

(b) For the solutions in (a), examine whether the following property holds for all x ∈ Rn and

t ∈ R:
u(x, t) = u(x− µtα, 0).

Interpret this equation in terms of direction and speed. (3 points)

Solution.

(a) We apply the chain rule to differentiate F :

∂2u

∂t2
−

n∑
j=1

c2j
∂2u

∂x2j
= (−µ)2F ′′ −

n∑
j=1

c2j (αj)
2F ′′ =

µ2 −
n∑

j=1

c2jα
2
j

F ′′.

Clearly this is zero only if the relation between µ and α holds or if F ′′ = 0.

(b) This property does hold, because of the normalistion condition |α| = α · α = 1:

u(x, t) = F (α · x− µt) = F (α · (x− µtα)) = F (α · (x− µtα)− µ0) = u(x− µtα, 0).

This shows that plane waves are constant along the planes x · α = const.. If we consider a

line parallel, then the problem is reduced to the one dimensional wave equation with speed

µ. Hence we say the wave is moving in the direction α.

There are other sorts basic waves; spherical waves and standing waves are two important ex-

amples. In three dimensions, if a solution only depends on r = |x| then the wave equation

becomes

0 = ∂2
t u− ∂2

ru− 2

r
∂ru =

1

r
(∂2

t − ∂2
r )(ru).

This is again a one dimensional wave equation, solved by u(r, t) = r−1F (r − t) + r−1G(r + t).

The interpretation here is that there are inward and outward moving spheres, but the amplitude

is diminished/concentrated as the radius is changed.

A standing wave is one whose peaks do not move in space, it only oscillates in time. Simple

standing waves separate into the form u(x, t) = ũ(x) sin(ωt). The profile of the wave (the ũ

part) is governed by the equation

0 = (∂tt −△)u = (−ω2ũ−△ũ) sin(ωt).

Alternatively, this arises from taking the Fourier transformation in t, namely û(x, ω) =∫
u(x, t)e−iωt dt, and considering solutions with a constant frequency ω.
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41. Electromagnetic Waves

In physics, electrical and magnetic fields are modelled as time-dependent vector fields, which

mathematically are smooth functions E,B : R3 × R → R3. Through a series of experiments

in the 18th and 19th centuries, the existence and properties of these fields were discovered.

Importantly, it was discovered that the two phenomena were connected (both magnets and

static electricity had been known since antiquity). In 1861 James Clerk Maxwell published

a series of papers summarising electromagnetic theory, including a collection of 20 differential

equations. Over time these were further reduced to the following four (by Heaviside 1884 using

vector notation), called Maxwell’s Equations:

∇ · E =
1

ε0
ρ ∇× E = −∂B

∂t

∇ ·B = 0 ∇×B = µ0J + ε0µ0
∂E

∂t
.

As is usual, the∇ operator acts on the spatial coordinates x, and the × denotes the cross product

of R3. The constants ε0, the electrical permittivity, and µ0, the magnetic permeability, are

approximately ε0 ≈ 8, 854 ·10−12 A·s
V·m and µ0 ≈ 1, 257 ·10−6 V·s

A·m (V=Volt, s=Seconds, A=Ampere

and m=Metre) in a vacuum. Electrical charges are included via the charge density ρ and electric

currents are the movements of charges, J := vρ for a velocity field v.

The two equations with divergence were formulated by Gauss, based on known inverse-square

force laws, the curl of the electric field is due to Faraday, and the curl of the magnetic field is

due to Ampère. The last term in Ampère’s law that has the time-derivative of the electrical

field was an addition of Maxwell. With this correction, he was able to derive the equations for

electromagnetic waves, as you will now do.

(a) Let E und B be solutions to Maxwell’s equations in the absence of electric charges, ρ =

0, J = 0. Show that they each satisfy a modified wave equation (Question 40). You may use

without proof the identity ∇× (∇× f) = ∇(∇· f)−△f for smooth functions f : R3 → R3.

(3 points)

(b) Predict the speed of these waves. (2 Bonus Points)

(c) Argue that Ampère’s law in its original form∇×B = µ0J violates the conservation of charge

ρ under some conditions. Refer to Exercise Sheet 5 for the definition of a conservation law.

Thereby derive Maxwell’s additional term. (3 Bonus Points)

Solution.

(a) Suppose we have solutions E,B. As suggested by the hint, we take the curl of the curl

equations. Because curl is a linear operator (and derivatives commute) we may write

∇×∇× E = − ∂

∂t
∇×B = − ∂

∂t
ε0µ0

∂E

∂t
= −ε0µ0

∂2E

∂t2
.

On the other hand, we know the twice curl of E is ∇(∇ · E) − △E = ∇(0) − △E, using

Gauss’ law of electric fields. Rearranging we get a modified wave equation:

∂2E

∂t2
=

1

ε0µ0
△E.
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and likewise for B.

(b) We expect that the speed is given by µ as in Question 41(b), and this can be calculated

from the coefficients cj and the direction α. In this case, the coefficients are the same in

each coordinate direction, so factor out:

µ =
√∑

a2jc
2 = c|α| = c =

1
√
ε0µ0

≈ 299 800 000ms−1.

This is the speed of light. The speed of light had first been calculated nearly 200 years

earlier by Romer using astronomical observations of Jupiter and its moons, and would in

1862 measured with less than 1% error. The electrical constant had been determined only

5 years earlier with experiments with capacitors by Weber and Kohlrausch. The magnetic

constant is fixed by the definition to be 4π · 10−7. The measurements were good enough in

Maxwell’s day to see that these were close, and on this basis Maxwell hypothesised light

was an electromagnetic wave.

(c) We saw in Question 12 that a quantity, be it mass or in this case electrical charge, is

conserved when the change of density is equal to the negative of the divergence of the

flow (using the divergence theorem, the divergence of the flow is the amount of substance

leaving a small ball around that point). Symbolically, ∂tρ = −∇(vρ) = ∇J . If we take the

divergence of Ampère’s version we have

0 = ∇ · (∇×B) = µ0∇ · J.

This is only true when the charge density ρ is constant. As Ampère’s experiment used two

wires with constant currents, this was true in his experiment.

But in general we should add another term ∇ × B = µ0J + G. Applying the divergence

now, we see that

∇ ·G = −µ0∇ · J = µ0
∂

∂t
ρ = µ0ε0

∂

∂t
∇ · E.

Hence we conclude that G = µ0ε0∂tE+∇× g. Taking the simplest possibility, g = 0, gives

Maxwell’s correction.

Note that we shows that each component of the electric and magnetic fields solve the wave

equation, but this is a necessary condition. Faraday’s law show that there is a dependence

between the two fields. And both fields must have zero divergence, which creates a dependence

directly between the components. For example, consider if all of Ei are plane waves travelling in

the x3 direction, so E depends only on x3. Then ∇·E = 0 implies E3 = 0. The relations between

the components is polarization. For example, a solution such as E1 = E1(x3 − ct), E2 = E3 = 0

is a wave travelling in the x3 direction, but polarized in the x1 direction.
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