
Ross Ogilvie 4th November, 2024

Introduction to Partial Differential Equations

Exercise sheet 10

30. Special solutions of the heat equation

(a) Solutions of PDEs that are constant in the time variable are called “steady-state” solutions.

Describe steady-state solutions of the inhomogeneous heat equation. (1 point)

(b) Consider the heat equation u̇−∆u = 0 on Rn×R+ with smooth initial condition u(x, 0) =

h(x). Suppose that the Laplacian of h is a constant. Show that there is a solution whose

time derivative is constant. (1 point)

(c) Consider “translational solutions” to the heat equation on R × R+ (ie n = 1). These are

solutions of the form u(x, t) = F (x− bt). Find all such solutions. (2 points)

(d) If u is a solution to the heat equation, show for every λ ∈ R that uλ(x, t) := u(λx, λ2t) is

also a solution to the heat equation. (2 points)

Solution.

(a) Steady-state solutions are defined by u̇ = 0. The heat equation then reduces to a Poisson

equation: 0−∆u = f .

(b) If the time derivative of u is constant, then it follows that u(x, t) = u0(x) + u1t. From the

initial condition we must have u0 = h. Putting this into the heat equation gives

u1 −∆h = 0.

So choose the constant u1 = ∆h.

(c) Putting this into the heat equation gives

−bF ′ − F ′′ = 0.

Integrating gives

bF + F ′ = C.

This has the solution F (y) = C + A exp(−by). So we get the solution u(x, t) = C +

A exp(−bx+ b2t).

(d) This follows because ∂t(u(λx, λ
2t)) = λ2u̇(λx, λ2t) and ∂2

j (u(λx, λ
2t)) = λ2(∂2

j u)(λx, λ
2t).

31. The Fourier transform

In this question we expand on some details from Section 4.1. Recall that the Fourier transform

of a function h(x) : Rn → R is defined to be a function ĥ(k) : Rn → R given by

ĥ(k) =

∫
Rn

e−2πik·xh(x) dx.

Lemma 4.3 shows that it is well-defined for Schwartz functions.
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(a) Give the definition of a Schwartz function. (1 point)

(b) Argue that f : R → R given by f(x) = exp(−x2) is a Schwartz function. (2 points)

(c) Consider

I2 =

(∫
R
e−x2

dx

)2

=

(∫
R
e−x2

dx

)(∫
R
e−y2 dy

)
=

∫
R2

e−x2−y2 dx dy.

By changing to polar coordinates, compute this integral. (1 point)

(d) Prove the rescaling law for Fourier transforms: if h(x) = g(ax) then (1 point)

ĥ(k) = |a|−nĝ(a−1k).

(e) Prove the shift law for Fourier transforms: if h(x) = g(x− a) then (1 point)

ĥ(k) = e−2πia·kĝ(k).

(f) Show that δ is a tempered distribution. (2 points)

(g) Compute the Fourier transform of δ. (2 points)

(h) Try to compute the Fourier transform of 1. What is the difficulty?

(2 points)

Solution.

(a) A Schwartz function is a smooth functions whose partial derivatives (of all orders) decay

faster than the reciprocal of any polynomial. For such functions, for all multi-indices α and

k ∈ N
lim

|x|→∞
|x|k∂αf(x) = 0.

Clearly because this decays to zero, sup |x|k|∂αf(x)| exists. Conversely, if this supremum

exists, then

lim
|x|→∞

|x|k|∂αf(x)| = lim
|x|→∞

|x|−1|x|k+1|∂αf(x)| ≤ lim
|x|→∞

|x|−1 sup |x|k+1|∂αf(x)| = 0.

Therefore these two conditions are equivalent. The second version, sup |x|k|∂αf(x)| < ∞,

is often more useful.

(b) This is a function of one variable, so we do not need to use multi-indices.

f = e−x2
,

f ′ = −2xe−x2

f ′′ = −2e−x2
+ 4x2e−x2

.

It is clear that higher derivatives derivative have the form P (x)e−x2
where P (x) is a poly-

nomial. The exponential factor is dominant for large |x|, so f (n) decays faster than any

polynomial. Thus f is Schwartz.
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(c) After the substitution into polar coordinates we have

I2 =

∫ 2π

0

∫ ∞

0
exp(−r2) r dr dθ =

∫ 2π

0

[
− 1

2
exp(−r2)

]∞
0

dθ = π.

Thus I =
√
π.

This integral has a long history. As best as I can tell, de Moivre was the first to prove

something equivalent to this calculation. In 1733 he showed that the binomial distribution

in probability theory could be approximated by an exponential term(
n

n
2 + d

)
0.5n ≈ Ce−2d2/n

and gave a numerical value for the constant. This is equivalent an approximation for the

factorial, to which Stirling is given credit for calculating exact constant

lim
n→∞

n!

nn+0.5e−n
=

√
2π

using the Wallis product for π (1656)

π

2
=

(
2

1
· 2
3

)(
4

3
· 4
5

)(
6

5
· 6
7

)
. . .

De Moivre and Stirling were contemporaries, Stirling had just written a big book on infinite

series, and de Moivre (according to a quote I’ve seen) gives Stirling credit, but it’s not

entirely clear to me how involved Stirling actually was. Perhaps de Moivre was just being

modest. My sources for these historical remarks are Lee, Pearson, 1924, and Stahl, 2006.

In any case, since the sum of probabilities must add to 1, and the sum can be approximated

by an integral, this implies the result. The first person to explicitly state the result was

Laplace in 1774. Gauss’ name seems be attached to this integral because of his role in

popularising e−x2
as a model of measurement errors in astronomy and other sciences. The

modern, most common, proof is due to Poisson, simplifying a method of his PhD advisor

Laplace. This is the method above and it’s ‘one from the book’.

In the script we needed a similar integral to compute the Fourier transform of the Gaussian

curve, except in multiple variables and along a complex line. The integrals separate, so it

is sufficient to consider the problem in one variable, namely that
∫
ik+R exp(−x2) dx =

√
π

for any k. Let us present some arguments for this.

Argument from complex analysis: For the integral along a line in the complex plane,

it is of course natural to use a result of complex analysis. Consider

g(k) =

∫
R
exp−[πik + y]2 dy.

This is an analytic function in the variable k ∈ C. For all k ∈ iR, the transformation z =

πik + y is a real transformation, so it does indeed reduce to g(k) =
∫
R exp(−z2) dz =

√
π.

The unique continuation property says that two (in this case complex) analytic functions

that agree on a sequence and its limit must agree everywhere. Think of the right hand
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side as the constant function
√
π, which is analytic. Hence g(k) =

√
π for all k, not just

imaginary k.

Argument from Schmidt: In previous years Prof Schmidt gave an very concrete argu-

ment using power series. We begin with the observation∫
R
e−(πik+y)2+(πik)2 dy =

∫
R
e−2πiky−y2 dy.

Let us then investigate the following integral for real values of ω. By the same algebraic

manipulations, we have ∫
R
e−(ω+y)2+ω2

dy =

∫
R
e−2ωy−y2 dy.

The left hand side is easy to manipulate∫
R
e−(ω+y)2+ω2

dy = eω
2

∫
R
e−(ω+y)2 dy = eω

2

∫
R
e−z2 dz =

√
πeω

2
=

∞∑
l=0

√
π

l!
ω2l

On the right hand side, we expand this into a power series in ω:∫
R
e−2ωy−y2 dy =

∫
R
e−y2

∞∑
l=0

(−2ωy)l

l!
dy =

∞∑
l=0

(∫
R
e−y2 (−2y)l

l!
dy

)
ωl

These two power series are equal, so their coefficients must be equal. In other words

∫
R
e−y2 (−2y)l

l!
dy =


√
π

(l/2)! l even

0 l odd

We can now return to the imaginary case. Again, making the power series expansion in k∫
R
e−2πiky−y2 dy =

∫
R
e−y2

∞∑
l=0

(−2πiky)l

l!
dy

=
∞∑
l=0

(∫
R
e−y2 (−2y)l

l!
dy

)
(πik)l

=
∞∑
l=0

√
π

l!
(πik)2l

=
√
π

∞∑
l=0

(−π2k2)l

l!

=
√
π exp(−π2k2).

This also gives the result. Note here that at the core of the argument was “two equal

power series have equal coefficients”. This is how one proves that analytic functions have

the unique continuation property. So the above two proofs are not as different as they first

appear.
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Argument from differentiating: I’ve saved the simplest method until last. Consider

the function g(k) again and differentiate

g(k) =

∫
R
e−[πik+y]2 dy

g′(k) =

∫
R
−2[πik + y]× πi× e−[πik+y]2 dy

= πi

∫
R
−2[πik + y]× e−[πik+y]2 dy

= πi

∫
R

∂

∂y
e−[πik+y]2 dy = πie−[πik+y]2

∣∣∣y=∞

y=−∞
= 0.

Thus g(k) is a constant function, and is equal to g(0). But this is then exactly the real

integral that we know the value of.

(d) We make the coordinate transformation y = ax. The Jacobian of this transformation is

|a|n. Thus

ĥ(k) =

∫
Rn

e−2πik·xg(ax) dx =

∫
Rn

e−2πik·(a−1y)g(y) |a|−ndy = |a|−nĝ(a−1k).

(e) We make the coordinate transformation y = x− a. The Jacobian of this transformation is

1. Thus

ĥ(k) =

∫
Rn

e−2πik·xg(x− a) dx =

∫
Rn

e−2πik·(y+a)g(y) dy = e−2πik·aĝ(k).

(f) Let ϕm be a sequence of test functions converging to zero in S . In particular, for α =

0, l = 0 we must have ρ0,0(ϕm) = sup |ϕm| → 0. This allows us to conclude that δ(ϕm) =

ϕm(0) → 0.

(g) Similar to the previous part, if ϕm → ϕ in S then in particular ∥ϕ − ϕm∥∞ → 0 and

ϕm(0) → ϕ(0). This shows that the delta distribution acts on Schwartz functions also by

evaluation at 0. Therefore

δ̂(ϕ) = δ(ϕ̂) = ϕ̂(0) =

∫
Rn

e−2πi0·xϕ(x) dx =

∫
Rn

1ϕ(x) dx.

In other words, δ̂ = F1.

Another way to deduce this is to use Lemma 4.4, that the Fourier transforms turns a

convolution into a product. Then we have for all u ∈ S

û = F(δ ∗ u) = δ̂û.

This is only possible if δ̂ = 1.

(h) From the previous part and the inverse Fourier transform, we see that 1̂ = δ. But let’s see

what happens if we try this directly, like the question asks.

Firstly we should check that 1 is a tempered distribution. As in an earlier part let ϕm be a

sequence of test functions converging to zero in S , so we know ρ0,0(ϕm) = supx |ϕm(x)| → 0
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and ρn,0(ϕm) = supx |x|2n|ϕm(x)| → 0. Hence

|F1(ϕm)| =
∣∣∣∣∫

Rn

1ϕm(x) dx

∣∣∣∣ =
∣∣∣∣∣
(∫

B(0,1)
+

∫
Rn\B(0,1)

)
ϕm(x) dx

∣∣∣∣∣
≤ ρ0,0(ϕm)ωn +

∫
Rn\B(0,1)

|x|−2n|x|2n|ϕm(x)| dx

≤ ρ0,0(ϕm)ωn + ρ2n,0(ϕm)

∫
Rn\B(0,1)

|x|−2n dx.

Because ∫
Rn\B(0,1)

|x|−2n dx =

∫ ∞

1
r−2n nωnr

n−1 dr = nωn

∫ ∞

1
r−n−1 dr

≤ nωn

∫ ∞

1
r−2 dr = nωn,

we conclude that |F1(ϕm)| → 0 as m → ∞. Hence F1 ∈ S ′.

Now we come to the actual Fourier transform. By definition

F̂1(ϕ) = F1(ϕ̂) =

∫
Rn

ϕ̂(k) dk =

∫
Rn

(∫
Rn

e−2πik·xϕ(x) dx

)
dk.

At this point, we would like to interchange the order of integration, but the inner integral

of ∫
Rn

(∫
Rn

e−2πik·x dk

)
ϕ(x) dx

is not well-defined. We ‘hand-waved’ in the beginning of Section 4.1 that such integral are

zero for k ̸= 0 because of periodicity, but this is not really a valid argument. And for k = 0

the inner integral is ∞. This is reminiscent of the trying to view the delta distribution as

a function, it is infinite at zero and vanishes everywhere else, and has a special integration

property.

The way to make this a valid argument is to use some sort of mollifier and limit. This is

effectively what we did on page 64 of the script when we chose v = e−4π2|k|2ϵ and v̂ = Φ(x, ϵ).

Taking the limit ϵ → 0 gives v = 1 and v̂ = δ. This was the essential step in the proof of

the inverse Fourier transform. Alternatively we could use the multiplication rule of Fourier

transforms

û = F [u1] = û ∗ 1̂.

This shows that 1̂ must be the identity element of convolution, ie δ. But we proved this

rule too using the inverse Fourier transform. The moral of the story is that the inverse

Fourier transform is an unavoidable nexus in the theory, and that the tricky argument with

mollification is essential.
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32. One step at a time

Prove the following identity for the fundamental solution in one dimension (n = 1):

Φ(x, s+ t) =

∫
R
Φ(x− y, t)Φ(y, s) dy.

(2 points)

Hint. You may use without proof that∫
R
exp(−A+By − Cy2) dy =

√
π

C
exp

(
B2

4C
−A

)
.

Solution.∫
R
Φ(x− y, t)Φ(y, s) dy =

∫
R

1√
4πt

√
4πs

exp

(
−(x− y)2

4t
− y2

4s

)
dy

=
1√

4πt
√
4πs

∫
R
exp

(
−x2

4t
+

x

2t
y −

[
1

4t
+

1

4s

]
y2
)

dy

=
1√

4πt
√
4πs

√
π
s+t
4st

exp

(
x2

4t2
· 1
4
· 4st

s+ t
− x2

4t

)
=

1√
4π(s+ t)

exp

(
− x2

4(s+ t)

)
= Φ(x, s+ t).

We know that convolution of the initial condition with the fundamental solution over the space

coordinates gives the solution to the initial value problem. The fact that we have s + t in the

time suggests we should do this twice. So if we begin with the initial condition h(x) and then

solve up to time t, we have

u(x, t) =

∫
R
Φ(x− y, t)h(y) dy.

If we take x 7→ u(x, t) as the start of a new initial value problem and then calculate what the

solution is at time s we get

v(x, s) =

∫
R
Φ(x− y, s)u(y, t) dy

=

∫
R
Φ(x− y, s)

∫
R
Φ(y − z, t)h(z) dz dy

=

∫
R

(∫
R
Φ(x− y, s)Φ(y − z, t) dy

)
h(z) dz

=

∫
R

(∫
R
Φ(x− z − y, s)Φ(y, t) dy

)
h(z) dz.

(We made a shift substitution to get to the last line, but reused the letter y.) On the other

hand, if we began with the initial condition h(x) and computed the solution at time s + t we

would find

u(x, s+ t) =

∫
R
Φ(x− z, s+ t)h(z) dz.

The relation we just proved says that these two solutions are the same. This shows that the

heat equation does not have ‘long term memory’, it only depends on the immediately prior
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state, not on anything that happened before that. This is in contrast to its behaviour in space,

where the action at one point can immediately affect points infinitely far away. This property

is also called the semigroup property because the solution operators h 7→ Hth := Φ(·, t) ∗ h form

a semigroup: HsHt = Hs+t.
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