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20. The only constant is change
Let A\c : R™ — R be the standard mollifier. Let F' € D(2) be any distribution, not necessarily

regular.

(a) For any point a € Q, explain why F'(A:(z — a)) is well-defined for ¢ sufficiently small.

(1 point)

(b) Expand the definitions to show (A. * F')(a) = F(A:(x — a)). (2 points)
(c) Suppose that F' has the property that F(A:(x —a)) = 0 for all a,e (for which it is defined).
Argue using Exercise 19 that F' = 0. (2 points)

(d) Suppose that F' has the following property: if a test function ¢ € D(2) has total integral

/Q () de =0,

then F'(¢) = 0. Prove that F' = F, for ¢ € R the constant function. (8 points)
Hint. Define ¢ = (A, x F')(a).

Zero,

Solution.

(a) Q is an open set, so any point a € € has a closed neighborhood B(a,r) C 2. The support

of A.(x — a) is B(a,¢€), which is hence contained in 2 for any € < r.

(b) We understand from Lemma 2.16 that the convolution of a smooth function of compact
support and a distribution is again smooth function. That gives (A x F')(a) = F(T,PA:).

By the definitions of the translation and point reflection operators
ToPA(z) = PAc(z — a) = A\(a — z).
But the standard mollifier is point reflection symmetric, so this is also A:(x — a).

(c) In light of (b), we might restate the property on F as that A x F' = 0 for all €. Therefore

O=limMN*xF=0xF=F.
€l0

Here we have used that lim. g A\ = 0, Exercise 19(b), and § * F' = F, Exercise 19(c).

(d) The idea is to use part (c) to prove F' — F, = 0. Choose any ball B(a,r) C Q and set
¢ = (A * F)(a). This constant is independent of the choice of a,r; if a’,7’ is any other
choice then p(z) = A (x — a’) — A\p(z — a) has

/ng(x) dz::/ﬂ)\r/(x—a)d:c—/ﬂ)\r(:n—a)dmzl—lz(),
hence
¢ — e = O F)(@) — O F) (@) = PO — a') — Ml — a)) = F() = 0.

On the other hand, observe that

FC(AT(x—a))_/QcAT(x—a) d:ﬂ—c/ M@ —a)dr = ¢,



using that \.(z — a) is the shift of a mollifier, and so has total integral 1. Putting these

facts together gives
(F—F.)Ae(z—a))=F(Ae(z —a)) — Fe(Ae(x —a)) =c—c=0.

Thus we can conclude from part (c) that F' — F, = 0.

21. Twirling towards freedom
Let u € C?(R™) be a harmonic function. Show that the following functions are also harmonic.

(a) v(z) =u(x +b) for b € R™.
(b) v(z) = u(ax) for a € R.
() = u(
(z) = u(

Q

x

(c Rz) for R(z1,...,xn) = (—21,%2,...,Ty) the reflection operator.
(d)

Together these show that the Laplacian is invariant under similarities (Euclidean motions, re-

~
<

r)=1u

= u(Az) for any orthogonal matrix A € O(R").

<

X

flection and rescaling). (6 points)

Solution.

(a) This follows by the chain rule

0%u
Av(z) :ZT(Hb)-l = Au(z +b) = 0.

Av(z) =Y aii <§Z (az) - a) = a®Au(az) = 0.

(c) You guessed it, we apply the chain rule. Only the x; derivative is affected:
v 0 ou 0%u
)= — [ Z2(R
Ox3 (@) O0xy < 33:1( :1:)) Ox?
This shows Av(z) = Au(Rz) = 0.
(d) This is also the chain rule, with (Az); = }_; Ajjz;. We will write this with indices, but if

you can keep everything as matrices then it is a bit shorter.

i;?;;)k 8xk < Z Aij x])
S (S
(S
- Z axmaxl (Z A”:”J)A”‘?Am’“

o2 (Rz).




Now when we sum over k, we can group together the like derivatives and get a sum over

the A multipliers. Because A is an orthogonal matrix, we have AAT = I, or in other words
Om = Dk A (AT = > i At Ami. This gives

82
Z 8$m3ml (Az) (g A“fAmk> Z Mm oz, ()i = ; a;l;(Ax) 0.

22. Harmonic Polynomials in Two Variables

(a) Let u € C*°(R"™) be a smooth harmonic function. Prove that any derivative of u is also

harmonic. (1 point)

(b) Choose any positive degree n. Consider the complex valued function f,, : R? — C given by
fu(z,y) = (z4+wy)™ and let u, (z, y) and v, (z,y) be its real and imaginary parts respectively.

Show that u,, and v,, are harmonic. (3 points)

(c) A homogeneous polynomial of degree n in two variables is a polynomial of the form p =
S apxFy"*. Show that a homogeneous polynomial of degree n is harmonic if and only if

it is a linear combination of u,, and vy,. (2 points + 2 bonus points)

Solution.

(a) Since the function is smooth, it is in particular thrice continuously differentiable. Thus we

can interchange the order of partial derivatives

A(Ou) = Ohoiu =" 0idju = d;Au = 0.
k k

(b) There are two approaches. The simplest is to extend the Laplacian linearly to complex

valued functions. All normal rules of calculus apply and we get
Afp=nn—1)(z+w)" *+n(n—1)*)(z+w)" > =0.

But perhaps this feels undeserved. Let’s instead compute more directly. By binomial

expansion we have

n
Uy +L0y = E (k) Ry b — E (2 > (—I)Jx”_ijQJ—H g <2j N 1) (—1)23;5"_2]_1312]“.

k=0 0<2i<n N 0<2j+1<n

Differentiating gives

M= Y (=22 =) ()0 S i) - 1)) ) (1)

0<2j<n—1 1<2j<n
= ¥ [me2e-2-n(g) - @iraein(,," )| e
0<2j<n—1 J J+



The result now follows from the definition of the binomial coefficients.

n , , n! n!
(=20 =25 )(5) = =200 =2~ G
n! n!

<2j+2><2j+1>( ) () + )25+ 1) -

25 + 2 (n—27—=2)!1(25+2)!  (n—25—2)1(25)!

Likewise for v,,.

Any linear combination of wu, and v, is harmonic since A is a linear operator. For the
converse, we prove this by induction. Note that the set of homogeneous polynomials is

closed under addition and scaling. Further it is closed under differentiation:

n n n—1
0x > _apz®y"F =3 " kapat Ty F = (5 + Dajaly D
k=0 k=1 =0

For n = 0 and n = 1 the result holds because u,, v, span all polynomials.

Suppose now it holds up to degree n. Let p = poz™ 1y + p12™y' + ... be a homogeneous
harmonic polynomial of degree n+ 1. Define ¢ = p — potin41 — %pl'[}n+1. Then this does not
have the terms 2" 1y" or "y!. Note that ,q is again a homogeneous harmonic polynomial
and its degree is n, so d,q = au, + bv, for some constants ¢ and b. But J,¢ has no term
with 2¢% or " 'y!, hence a = b = 0. This shows that ¢ is constant with respect to z,
and the only possibility is then that ¢ = Ay™*!. But this is only harmonic for A = 0. We

conclude therefore that p = poun+1 + %pl'l)n_l,_l.



