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Introduction to Partial Differential Equations

Exercise sheet 7

20. The only constant is change

Let λε : Rn → R be the standard mollifier. Let F ∈ D(Ω) be any distribution, not necessarily

regular.

(a) For any point a ∈ Ω, explain why F (λε(x− a)) is well-defined for ε sufficiently small.

(1 point)

(b) Expand the definitions to show (λε ∗ F )(a) = F (λε(x− a)). (2 points)

(c) Suppose that F has the property that F (λε(x− a)) = 0 for all a, ε (for which it is defined).

Argue using Exercise 19 that F = 0. (2 points)

(d) Suppose that F has the following property: if a test function φ ∈ D(Ω) has total integral

zero, ∫
Ω
φ(x) dx = 0,

then F (φ) = 0. Prove that F = Fc for c ∈ R the constant function. (3 points)

Hint. Define c = (λr ∗ F )(a).

Solution.

(a) Ω is an open set, so any point a ∈ Ω has a closed neighborhood B(a, r) ⊂ Ω. The support

of λε(x− a) is B(a, ε), which is hence contained in Ω for any ε ≤ r.

(b) We understand from Lemma 2.16 that the convolution of a smooth function of compact

support and a distribution is again smooth function. That gives (λε ∗ F )(a) = F (TaPλε).

By the definitions of the translation and point reflection operators

TaPλε(x) = Pλε(x− a) = λε(a− x).

But the standard mollifier is point reflection symmetric, so this is also λε(x− a).

(c) In light of (b), we might restate the property on F as that λε ∗ F = 0 for all ε. Therefore

0 = lim
ε↓0

λε ∗ F = δ ∗ F = F.

Here we have used that limε↓0 λε = δ, Exercise 19(b), and δ ∗ F = F , Exercise 19(c).

(d) The idea is to use part (c) to prove F − Fc = 0. Choose any ball B(a, r) ⊂ Ω and set

c = (λr ∗ F )(a). This constant is independent of the choice of a, r; if a′, r′ is any other

choice then φ(x) = λr′(x− a′)− λr(x− a) has∫
Ω
φ(x) dx =

∫
Ω
λr′(x− a′) dx−

∫
Ω
λr(x− a) dx = 1− 1 = 0,

hence

c′ − c = (λr′ ∗ F )(a′)− (λr′ ∗ F )(a′) = F (λr′(x− a′)− λr(x− a)) = F (φ) = 0.

On the other hand, observe that

Fc(λr(x− a)) =

∫
Ω
cλr(x− a) dx = c

∫
Ω
λr(x− a) dx = c,
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using that λr(x − a) is the shift of a mollifier, and so has total integral 1. Putting these

facts together gives

(F − Fc)(λε(x− a)) = F (λε(x− a))− Fc(λε(x− a)) = c− c = 0.

Thus we can conclude from part (c) that F − Fc = 0.

21. Twirling towards freedom

Let u ∈ C2(Rn) be a harmonic function. Show that the following functions are also harmonic.

(a) v(x) = u(x+ b) for b ∈ Rn.

(b) v(x) = u(ax) for a ∈ R.

(c) v(x) = u(Rx) for R(x1, . . . , xn) = (−x1, x2, . . . , xn) the reflection operator.

(d) v(x) = u(Ax) for any orthogonal matrix A ∈ O(Rn).

Together these show that the Laplacian is invariant under similarities (Euclidean motions, re-

flection and rescaling). (6 points)

Solution.

(a) This follows by the chain rule

∆v(x) =
∑ ∂2u

∂x2i
(x+ b) · 1 = ∆u(x+ b) = 0.

(b) This also follows by the chain rule

∆v(x) =
∑ ∂

∂xi

(
∂u

∂xi
(ax) · a

)
= a2∆u(ax) = 0.

(c) You guessed it, we apply the chain rule. Only the x1 derivative is affected:

∂2v

∂x21
(x) =

∂

∂x1

(
− ∂u

∂x1
(Rx)

)
=

∂2u

∂x21
(Rx).

This shows ∆v(x) = ∆u(Rx) = 0.

(d) This is also the chain rule, with (Ax)i =
∑

j Aijxj . We will write this with indices, but if

you can keep everything as matrices then it is a bit shorter.

∂v

∂xk
(x) =

∂

∂xk
u
(∑

j

Aijxj

)
=
∑
l

∂u

∂xl

(∑
j

Aijxj

)
Alk

∂2v

∂x2k
(x) =

∂

∂xk

∑
l

∂u

∂xl

(∑
j

Aijxj

)
Alk

=
∑
l,m

∂2u

∂xm∂xl

(∑
j

Aijxj

)
AlkAmk
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Now when we sum over k, we can group together the like derivatives and get a sum over

the A multipliers. Because A is an orthogonal matrix, we have AAT = I, or in other words

δlm =
∑

k Alk(A
T )km =

∑
k AlkAmk. This gives

∆v(x) =
∑
l,m

∂2u

∂xm∂xl
(Ax)

(∑
k

AlkAmk

)
=
∑
l,m

∂2u

∂xm∂xl
(Ax)δlm =

∑
l

∂2u

∂x2l
(Ax) = 0.

22. Harmonic Polynomials in Two Variables

(a) Let u ∈ C∞(Rn) be a smooth harmonic function. Prove that any derivative of u is also

harmonic. (1 point)

(b) Choose any positive degree n. Consider the complex valued function fn : R2 → C given by

fn(x, y) = (x+ιy)n and let un(x, y) and vn(x, y) be its real and imaginary parts respectively.

Show that un and vn are harmonic. (3 points)

(c) A homogeneous polynomial of degree n in two variables is a polynomial of the form p =∑
akx

kyn−k. Show that a homogeneous polynomial of degree n is harmonic if and only if

it is a linear combination of un and vn. (2 points + 2 bonus points)

Solution.

(a) Since the function is smooth, it is in particular thrice continuously differentiable. Thus we

can interchange the order of partial derivatives

∆(∂iu) =
∑
k

∂2
k∂iu =

∑
k

∂i∂
2
ku = ∂i∆u = 0.

(b) There are two approaches. The simplest is to extend the Laplacian linearly to complex

valued functions. All normal rules of calculus apply and we get

∆fn = n(n− 1)(x+ ιy)n−2 + n(n− 1)(ι2)(x+ ιy)n−2 = 0.

But perhaps this feels undeserved. Let’s instead compute more directly. By binomial

expansion we have

un+ιvn =
n∑

k=0

(
n

k

)
ιkxn−kyk =

∑
0≤2j≤n

(
n

2j

)
(−1)jxn−2jy2j+ι

∑
0≤2j+1≤n

(
n

2j + 1

)
(−1)2jxn−2j−1y2j+1.

Differentiating gives

∆un =
∑

0≤2j≤n−1

(n− 2j)(n− 2j − 1)

(
n

2j

)
(−1)jxn−2j−2y2j +

∑
1≤2j≤n

(2j)(2j − 1)

(
n

2j

)
(−1)jxn−2jy2j−2

=
∑

0≤2j≤n−1

[
(n− 2j)(n− 2j − 1)

(
n

2j

)
− (2j + 2)(2j + 1)

(
n

2j + 2

)]
(−1)jxn−2j−2y2j .
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The result now follows from the definition of the binomial coefficients.

(n− 2j)(n− 2j − 1)

(
n

2j

)
= (n− 2j)(n− 2j − 1)

n!

(n− 2j)!(2j)!
=

n!

(n− 2j − 2)!(2j)!

(2j + 2)(2j + 1)

(
n

2j + 2

)
= (2j + 2)(2j + 1)

n!

(n− 2j − 2)!(2j + 2)!
=

n!

(n− 2j − 2)!(2j)!

Likewise for vn.

(c) Any linear combination of un and vn is harmonic since ∆ is a linear operator. For the

converse, we prove this by induction. Note that the set of homogeneous polynomials is

closed under addition and scaling. Further it is closed under differentiation:

∂x

n∑
k=0

akx
kyn−k =

n∑
k=1

kakx
k−1yn−k =

n−1∑
j=0

(j + 1)aj+1x
jy(n−1)−j

For n = 0 and n = 1 the result holds because un, vn span all polynomials.

Suppose now it holds up to degree n. Let p = p0x
n+1y0 + p1x

ny1 + . . . be a homogeneous

harmonic polynomial of degree n+1. Define q = p−p0un+1− 1
np1vn+1. Then this does not

have the terms xn+1y0 or xny1. Note that ∂xq is again a homogeneous harmonic polynomial

and its degree is n, so ∂xq = aun + bvn for some constants a and b. But ∂xq has no term

with xny0 or xn−1y1, hence a = b = 0. This shows that q is constant with respect to x,

and the only possibility is then that q = Ayn+1. But this is only harmonic for A = 0. We

conclude therefore that p = p0un+1 +
1
np1vn+1.

4


